VELOCITY-DEPENDENT CONSERVATIVE NONLINEAR OSCILLATORS WITH EXACT HARMONIC SOLUTIONS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical approximate solutions for conservative nonlinear oscillators by modified rational harmonic balance method

An analytical approximate technique for conservative nonlinear oscillators is proposed. This method is a modification of the generalized harmonic balance method in which analytical approximate solutions have a rational form. This approach gives us not only a truly periodic solution but also the frequency of motion as a function of the amplitude of oscillation. Three truly nonlinear oscillators ...

متن کامل

Exact solutions for a family of discretely spiked harmonic oscillators

5 Normalization and orthogonalization 15 5.1 Admissible physical solutions . . . . . . . . . . . . . . . . . . 16 5.2 Linear normalization . . . . . . . . . . . . . . . . . . . . . . . 16 5.3 Radial normalization . . . . . . . . . . . . . . . . . . . . . . . 18 5.3.1 One dimensional . . . . . . . . . . . . . . . . . . . . . 18 5.3.2 Two dimensional . . . . . . . . . . . . . . . . . . . . . 20 5...

متن کامل

Exact solutions of (3 +1)-dimensional nonlinear evolution equations

In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.

متن کامل

Remark on periodic solutions of nonlinear oscillators

AppIied Mathematics Letters ~w.el~vier.ni/~ocate/~l Abstract-we contribute to the method of trigonometric series for solving differential equations of certain nonlinear oscillators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Sound and Vibration

سال: 2000

ISSN: 0022-460X

DOI: 10.1006/jsvi.1999.2621